INFLUENCE OF AMPLITUDE OF VIBRATIONS ON LOSS FACTORS OF LAMINATED COMPOSITE BEAMS AND PLATES

M. Ganapathi and B. P. Patel
Institute of Armament Technology, Girinagar, Pune 411 025, India
AND
M. Touratier
Laboratoire de Modelisation et Mecanique des Structures, URA-1776, CNRS-UPMC Paris 6-ENSAM-ENS Cachan, 151 Bd de l'Hopital, 75013 Paris, France

(Received 10 February 1998, and in final form 5 August 1998)

1. INTRODUCTION

The introduction of structural components made of advanced composite materials such as laminated beams and plates has assumed much importance in the design of aerospace structures; as a consequence, a large number of publications on the subject has appeared in recent years. Further, in order to control the resonant amplitudes of vibration and thus extending service life of such structures under periodic load/impact, the damping in the composite materials plays an important role. For fibre reinforced composites, damping value is higher, in general, compared to that of metallic structures, and it has been brought out in the literature that the system loss factors depend on fibre and resin types, ply-angle, lay-up, and thickness and aspect ratios.

Research on the damping analysis of laminated fibre reinforced composites is not so extensive as that on the undamped free and forced vibration analysis. Gibson and Plunkett [1], and Gibson [2] reviewed experimental and analytical efforts to characterize the damping properties of fibre reinforced materials. Important contributions are cited here. The analysis of vibration and damping of fibre reinforced composite plates has been carried out by Alam and Asnani [3], Malhotra et al. [4], and Koo and Lee [5]. Alam and Asnani [3] employed a solution in the form of a series summation and the finite element procedure was adopted by Malhotra et al. [4], and Koo and Lee [5]. They are all based on linear dynamic analysis using the correspondence principle of linear visoelasticity. Even though a large amount of work has been carried out on the non-linear dynamics of continuum media, investigation into the damping behavior of the fibre reinforced composite beams/plates using non-linear dynamic analysis has not received much attention in the literature. Such studies are essential for the development of structural design strategies.

In this paper, an attempt is made through non-linear dynamic analysis, to study the influence of amplitude of vibrations on the damping behavior of reinforced composite laminates using the finite elements developed recently based on shear deformation theory, as outlined in the work of Touratier [6], Ganapathi et al. [7],
and Beakou and Touratier [8]. The complex eigenvalue problem based on complex elastic moduli is formulated and the geometric non-linearity due to moderately large deformation has been included based on von Karman's theory. The non-linear governing equations obtained here are solved using a direct iteration technique. The non-linear frequency values and in turn, system loss factors, are obtained for various values of amplitudes.

2. FORMULATION

The displacement field of rectangular shear deformable plates can be expressed as

$$
\begin{gather*}
u^{(k)}(x, y, z, t)=u(x, y, t)-z \partial w / \partial x+\left[f_{1}(z)+g_{1}^{(k)}(z)\right] \gamma_{1}^{o}+g_{2}^{(k)}(z) \gamma_{2}^{o}, \\
v^{(k)}(x, y, z, t)=v(x, y, t)-z \partial w / \partial y+g_{3}^{(k)}(z) \gamma_{1}^{o}+\left[f_{2}(z)+g_{4}^{(k)}(z)\right] \gamma_{2}^{o}, \\
w^{(k)}(x, y, z, t)=w(x, y, t), \tag{1}
\end{gather*}
$$

where $\left(u^{k}, v^{k}\right.$ and $\left.w^{k}\right)$ are the displacements in the k th layer along the (x, y, z) co-ordinates, and (u, v, w) and $\left(\theta_{x}, \theta_{y}\right)$ are the displacements and rotations of a point on the middle surfaces, respectively, and $\gamma_{1}^{o}\left(=\partial w / \partial x+\theta_{x}\right), \gamma_{2}^{o}\left(=\partial w / \partial y+\theta_{y}\right)$ are the shear strains at $z=0$, and t is the time. Finally, the functions involved in equation (1) for defining the kinematics are as follows:

$$
\begin{gather*}
f_{1}(z)=h / \pi \sin (\pi z / h)-h / \pi b_{55} \cos (\pi z / h), \\
f_{2}(z)=h / \pi \sin (\pi z / h)-h / \pi b_{44} \cos (\pi z / h), \\
g_{i}^{(k)}=a_{i}^{(k)} z+d_{i}^{(k)}, \quad i=1,2,3,4 ; \quad k=1,2,3, \ldots, N, \tag{2}
\end{gather*}
$$

where N is the number of layers of the multi-layered structure, π is equal to $3 \cdot 141592, h$ is the total thickness of the plate and $b_{44}, b_{55}, a_{i}^{(k)}, d_{i}^{(k)}$ are coefficients to be determined from contact conditions for displacements and stresses between the layers and from the boundary conditions on the top and bottom surfaces of the plate. The details of the derivations of these coefficients can be found from references [7, 8].

It can be noted here [6-8] that, unlike in the other theories, trigonometric functions are introduced in the present displacement fields to approximate the shear distribution through the thickness of the plate. The plate model requires only five generalized displacement fields, and no shear correction factors, and it satisfies the interlayer continuity requirements on displacements and stresses.
The strain-displacement relations consisting of linear strain components, which allow cosine variation of transverse shear strain with vanishing shear stresses at the top and bottom of the plate, and non-linear strain components based on von Karman's theory, can be written as follows:

$$
\begin{aligned}
& \varepsilon_{x}=u^{x}-z w^{x x}+\left[f_{1}(z)+g_{1}^{(k)}(z)\right] \gamma_{1}^{o x}+g_{2}^{(k)}(z) \gamma_{2}^{o x}+(1 / 2)\left(w^{x}\right)^{2}, \\
& \varepsilon_{y}=v^{y}-z w^{v y}+g_{3}^{(k)}(z) \gamma_{1}^{o y}+\left[f_{2}(z)+g_{4}^{(k)}(z)\right] \gamma_{2}^{o y}+(1 / 2)\left(w^{y}\right)^{2},
\end{aligned}
$$

$$
\begin{gather*}
\gamma_{x y}=u^{y}+v^{x}-2 z w^{x y}+\left[f_{1}(z)+g_{1}^{(k)}(z)\right] \gamma_{1}^{o y}+g_{2}^{(k)}(z) \gamma_{2}^{o y} \\
+g_{3}^{(k)}(z) \gamma_{1}^{o x}+\left[f_{2}(z)+g_{4}^{(k)}(z)\right] \gamma_{2}^{o x}+\left(w^{x} w^{y}\right), \\
\gamma_{x z}=\left[f_{1}^{z}(z)+g_{1}^{(k) z}(z)\right] \gamma_{1}^{o}+g_{2}^{(k) z}(z) \gamma_{2}^{o} \\
\gamma_{y z}=g_{3}^{(k) z}(z) \gamma_{1}^{o}+\left[f_{2}^{z}(z)+g_{4}^{(k) z}(z)\right] \gamma_{2}^{o} \tag{3}
\end{gather*}
$$

where $\varepsilon_{x}, \varepsilon_{y}$ and $\gamma_{x y}$ are the inplane normal and shear strains. $\gamma_{x z}, \gamma_{y z}$ are the transverse shear strains respectively. The superscripts x, y, z denote the partial derivative of the function with respect to x, y, z.

For a composite laminate of thickness $h_{k}(k=1,2,3, \ldots)$, and the ply-angle ϕ_{k} $(k=1,2,3, \ldots)$, the necessary expressions for computing the stiffness coefficients, available in the literature [9], are used. For the damping analysis, the complex moduli of an orthotropic material are defined, according to the elastic-viscoelastic correspondence principle, as follows:

$$
\begin{array}{lll}
E_{1}^{*}=E_{1}^{R}+\mathrm{i} E_{1}^{I}, & E_{2}^{*}=E_{2}^{R}+\mathrm{i} E_{2}^{I}, & E_{3}^{*}=E_{3}^{R}+\mathrm{i} E_{3}^{I}, \quad G_{12}^{*}=G_{12}^{R}+\mathrm{i} G_{12}^{I}, \\
& G_{23}^{*}=G_{23}^{R}+\mathrm{i} G_{23}^{I}, & G_{13}^{*}=G_{13}^{R}+\mathrm{i} G_{13}^{I} . \tag{4}
\end{array}
$$

Here, E^{*} and G^{*} are Young's modulus and shear modulus, respectively. The subscript 1 denotes longitudinal direction whereas 2 and 3 refer to the transverse directions, with respect to the fibres. The superscripts R and I denote the real and imaginary parts of the complex moduli. The material loss factors $\eta_{1}, \eta_{2}, \eta_{3}$ under tension-compression and $\eta_{12}, \eta_{23}, \eta_{13}$ under shear are defined as

$$
\begin{array}{lll}
\eta_{1}=E_{1}^{I} / E_{1}^{R}, \quad \eta_{2} & =E_{2}^{I} / E_{2}^{R}, & \eta_{3}=E_{3}^{I} / E_{3}^{R}, \quad \eta_{12}=G_{12}^{I} / G_{12}^{R} \\
\eta_{23} & =G_{23}^{I} / G_{23}^{R}, & \eta_{13}=G_{13}^{I} / G_{13}^{R} . \tag{5}
\end{array}
$$

The strain energy of the laminate can be expressed in terms of the field variable $u, v, w, \theta_{x}, \theta_{y}$, and their derivatives. The kinetic energy includes the effect of in-plane and rotary inertia terms. Then, the governing equations are obtained by using Lagrange's equation of motion. These governing equations are solved using the finite element approach based on C^{1} continuous elements developed recently based on the above theory.

For the plate analysis, an eight-node rectangular element is employed. The domain of the rectangular plate is divided into a number of elements. The element has eight degrees of freedom per corner node, namely $u, v, w, \partial w / \partial x, \partial w / \partial y, \partial^{2} w /$ $\partial x \partial y, \theta_{x}, \theta_{y}$, and four degrees of freedom per mid-side node, namely $u, v, \theta_{x}, \theta_{y}$. The shape functions employed to describe these field variables are the Hermite cubic function for transverse displacement w, and the Serendipity quadratic function for the in-plane displacements u, v and rotations θ_{x}, θ_{y}.

Similarly, for the beam problems, the three-node beam element used here is based on Hermite cubic functions for w and quadratic functions for rotation, θ_{x}, and linear function for u. Further, the element needs four nodal degrees of freedom u, w, w_{x}, θ_{x} at both ends of the three-noded beam element, whereas the center node has one degree of freedom θ_{x}.

Using equation (3) and following the standard procedure given in reference [10], the finite element equations are derived as

$$
\begin{equation*}
[\mathbf{M}]\{\ddot{\boldsymbol{\delta}}\}+\left[[\mathbf{K}]+(1 / 2)\left[\mathbf{N}_{1}\right]+(1 / 3)\left[\mathbf{N}_{2}\right]\{\{\boldsymbol{\delta}\}=\{\mathbf{0}\},\right. \tag{6}
\end{equation*}
$$

where $[\mathbf{K}]$ is the linear stiffness matrix, and $\left[\mathbf{N}_{1}\right]$ and $\left[\mathbf{N}_{2}\right]$ are non-linear stiffness matrices. The stiffness matrices are of the complex form. $\{\boldsymbol{\delta}\}$ is the vector of the degrees of freedom associated with the displacement field in a finite element discretization. Substituting characteristics of the time function at the point of reversal of the motion

$$
\begin{equation*}
\{\ddot{\boldsymbol{\delta}}\}_{\text {max }}=-\lambda^{*}\{\boldsymbol{\delta}\}_{\text {max }} \tag{7}
\end{equation*}
$$

in equation (6), will lead to the following non-linear algebraic equation of the form

$$
\begin{equation*}
\left[[\mathbf{K}]+(1 / 2)\left[\mathbf{N}_{1}\right]+(1 / 3)\left[\mathbf{N}_{2}\right]\right]\{\boldsymbol{\delta}\}-\lambda *[\mathbf{M}]\{\boldsymbol{\delta}\}=\{\boldsymbol{0}\} . \tag{8}
\end{equation*}
$$

The complex eigenvalues of the form $\lambda^{*}=\left(\lambda^{R}+\mathrm{i} \lambda^{I}\right)=\left(\omega^{*}\right)^{2}$ where $\omega^{*}=\left(\omega^{R}+\mathrm{i} \omega^{R}\right)$ are obtained for the above equation by using direct iteration technique, suitably modified for the eigenvalue problems based on the QR algorithm. The resonance frequencies ω and the system loss factors η are calculated from the eigenvalues, corresponding to different amplitudes of vibration level as:

$$
\begin{equation*}
\omega=\omega^{R}=\left(\lambda^{R}\right)^{1 / 2}, \quad \eta=\lambda^{I} / \lambda^{R} . \tag{9}
\end{equation*}
$$

3. NUMERICAL APPLICATION

Since the element is derived based on the field consistency approach, an exact numerical integration scheme is employed to evaluate all the strain energy terms. Also, there is no need to use the shear correction factor here, as the transverse strain is represented by a cosine function, which is of higher order in nature. Thus, the present development can be verified numerically by comparing the results based on different models, which are used for studying the thin and thick laminates. Such comparisons were made through linear and non-linear dynamic analysis, wherever possible, for the frequency values of composite laminates and excellent agreement was observed. For the sake of brevity, these results are not presented here. In this section, the system loss factors, as obtained from this work, will be discussed. Furthermore, based on progressive mesh refinement, 16 elements idealization and an 8×8 grid size are found to be adequate to model the laminated beams and plates, respectively, for the flexural/bending damping analysis. The damping factors obtained using linear analysis by 16 elements idealization for the beam and an 8×8 mesh size for the plate, are depicted in Table 1, and they are found to be in very good agreement with the available analytical/numerical solutions [5, 11].
The materials considered here are [12] as follows: GFRP(Glass/DX-210): $E_{1}^{R}=37.78 \mathrm{GPa}, E_{2}^{R}=10.90 \mathrm{GPa}, E_{3}^{R}=10.90 \mathrm{GPa}, G_{12}^{R}=4.91 \mathrm{GPa}, G_{23}^{R}=4.91$ $\mathrm{GPa}, G_{13}^{R}=4.91 \mathrm{GPa}, v_{12}=0.30, \eta_{1}=13.8465 \times 10^{-4}, \quad \eta_{2}=\eta_{3}=8.0373 \times 10^{-3}$, $\eta_{12}=\eta_{23}=\eta_{13}=1.09976 \times 10^{-2}, \quad \rho=1870 \quad \mathrm{~kg} / \mathrm{m}^{3} ; \quad \operatorname{CFRP}(H M S / D X-210):$ $E_{1}^{R}=172.70 \mathrm{GPa}, E_{2}^{R}=7.20 \mathrm{GPa}, E_{3}^{R}=7.20 \mathrm{GPa}, G_{12}^{R}=3.76 \mathrm{GPa}, G_{23}^{R}=3.76$ $\mathrm{GPa}, G_{13}^{R}=3.76 \mathrm{GPa}, v_{12}=0.30, \eta_{1}=7.16197 \times 10^{-4}, \eta_{2}=\eta_{3}=6.71634 \times 10^{-3}$,
Table 1
Comparison of loss factors $\left(\eta_{L}\right)$ of three-layered symmetric sandwich beams (thickness ratio of mid-to-outer layer $=1 / 7$) and laminated plates (simply supported)

Beam ${ }^{\text {a }}$ ($L / h=30$)			Plate ${ }^{\text {b }}$ (square)				
Young's modulus (mid layer) MPa	Present	Reference [11]	Lay-up	Present		Reference [5]	
				$L / h=10$	100	10	100
$7 \cdot 25$	$0 \cdot 3204$	$0 \cdot 32$	0°	$0 \cdot 00497$	$0 \cdot 00193$	$0 \cdot 00489$	$0 \cdot 00189$
$72 \cdot 5$	$0 \cdot 1134$	$0 \cdot 1$	$\left(0^{\circ} / 90^{\circ} / 0^{\circ} / 90^{\circ}\right)_{s}$	$0 \cdot 00389$	$0 \cdot 00191$	0.00381	0.00189

${ }^{a}$ Mid-layer: Poisson's ratio $(v)=0.45$; density $(\rho)=1200 \mathrm{~kg} / \mathrm{m}^{3}$; material loss factor $(\eta)=0.5$.
Outer layers: Young's modulus $=45 \cdot 54 \mathrm{GPa} ; v=0.33 ; \rho=2040 \mathrm{~kg} / \mathrm{m}^{3} ; \eta=0 \cdot 0$.
${ }^{\mathrm{b}}$ All layers are of equal thickness and same material, CFRP(HMS/DX-210).
Table 2
Loss factor ratio $\left(\eta_{N L} / \eta_{L}\right)$ with vibration amplitudes $\left(w / \rho_{g}\right)$ of simply supported laminated beams

Lay-up	w / ρ_{g}	$L / h=10$	20	30	50	70	100	150	200
0°	$0 \cdot 1$	0.99643	$0 \cdot 99715$	0.99732	0.99741	0.99744	0.99745	0.99746	0.99746
	$0 \cdot 2$	0.98596	0.98878	$0 \cdot 98944$	0.98980	0.98991	0.98996	0.98999	$0 \cdot 99000$
	$0 \cdot 4$	0.94725	0.95770	$0 \cdot 96018$	$0 \cdot 96154$	$0 \cdot 96193$	$0 \cdot 96214$	$0 \cdot 96225$	$0 \cdot 96229$
	$0 \cdot 6$	$0 \cdot 89221$	0.91314	0.91814	0.92091	0.92170	0.92213	$0 \cdot 92236$	$0 \cdot 92244$
	$0 \cdot 8$	$0 \cdot 83016$	0.86247	$0 \cdot 87026$	$0 \cdot 87458$	$0 \cdot 87582$	$0 \cdot 87648$	$0 \cdot 87684$	0.87697
	1	$0 \cdot 76852$	0.81154	$0 \cdot 82201$	$0 \cdot 82786$	$0 \cdot 82953$	$0 \cdot 83043$	$0 \cdot 83091$	$0 \cdot 83108$
	Linear (η_{L})	$0 \cdot 00223$	0.00174	0.00164	0.00159	0.00158	0.00157	0.00157	0.00156
$0^{\circ} / 90^{\circ} / 0^{\circ}$	$0 \cdot 1$	0.99797	0.99864	$0 \cdot 99880$	0.99889	0.99892	0.99893	$0 \cdot 99894$	0.99894
	$0 \cdot 2$	0.99199	0.99464	0.99527	0.99562	0.99572	0.99577	$0 \cdot 99580$	0.99581
	$0 \cdot 4$	$0 \cdot 96953$	0.97954	0.98194	0.98327	0.98365	$0 \cdot 98385$	$0 \cdot 98396$	$0 \cdot 98400$
	$0 \cdot 6$	0.93653	0.95723	0.96224	$0 \cdot 96500$	0.96579	$0 \cdot 96621$	$0 \cdot 96644$	$0 \cdot 96652$
	$0 \cdot 8$	0.89782	0.93082	0.93885	0.94330	0.94458	0.94526	0.94563	0.94576
	1	$0 \cdot 85759$	0.90320	$0 \cdot 91436$	0.92055	0.92233	0.92328	0.92379	0.92397
	Linear (η_{L})	0.00227	$0 \cdot 00181$	0.00171	0.00166	0.00165	0.00164	0.00164	0.00164
$\left(0^{\circ} / 90^{\circ} / 0^{\circ} / 90^{\circ}\right)_{s}$	$0 \cdot 1$	0.99799	0.99839	$0 \cdot 99848$	0.99852	0.99853	0.99854	0.99854	0.99854
	$0 \cdot 2$	0.99205	0.99364	$0 \cdot 99398$	0.99415	0.99420	0.99423	0.99424	0.99425
	$0 \cdot 4$	$0 \cdot 96979$	0.97580	0.97706	0.97774	0.97792	0.97802	0.97808	0.97810
	$0 \cdot 6$	0.93724	0.94957	0.95219	0.95358	0.95396	0.95417	0.95428	0.95432
	$0 \cdot 8$	$0 \cdot 89930$	0.91880	0.92295	0.92515	0.92577	0.92610	0.92628	0.92634
	1	$0 \cdot 86013$	0.88680	0.89255	0.89560	$0 \cdot 89645$	$0 \cdot 89691$	0.89715	$0 \cdot 89724$
	Linear (η_{L})	$0 \cdot 00279$	$0 \cdot 00245$	0.00239	0.00235	0.00234	0.00234	0.00234	0.00233

Table 3
Loss factor ratio $\left(\eta_{N L} / \eta_{L}\right)$ with vibration amplitudes (w / h) of simply supported laminated plates

Lay-up	w / h	$L / h=10$	20	30	50	70	100	150	200
0°	$0 \cdot 1$	0.94981	0.96421	0.96792	0.97022	0.97093	0.97133	0.97154	0.97162
	$0 \cdot 2$	$0 \cdot 82698$	$0 \cdot 87358$	$0 \cdot 88626$	$0 \cdot 89432$	$0 \cdot 89683$	$0 \cdot 89823$	0.89899	$0 \cdot 89926$
	$0 \cdot 4$	0.58054	0.64338	0.70288	0.72275	0.72918	$0 \cdot 73280$	0.73478	0.73549
	$0 \cdot 6$	0.54473	0.50163	0.57722	0.60523	0.61468	0.62006	0.62304	0.62410
	Linear (η_{L})	0.00497	0.00291	0.00237	0.00206	0.00197	0.00193	0.00190	0.00189
$0^{\circ} / 90^{\circ} / 0^{\circ}$	$0 \cdot 1$	0.95103	0.96456	0.96804	0.97020	0.97087	0.97124	0.97145	0.97152
	$0 \cdot 2$	$0 \cdot 83024$	$0 \cdot 87400$	$0 \cdot 88581$	0.89327	$0 \cdot 89559$	$0 \cdot 89689$	$0 \cdot 89760$	$0 \cdot 89785$
	$0 \cdot 4$	0.56634	0.65387	$0 \cdot 68246$	$0 \cdot 70131$	0.70729	$0 \cdot 71065$	0.71251	$0 \cdot 71317$
	$0 \cdot 6$	-	0.49917	$0 \cdot 52765$	$0 \cdot 56016$	0.56802	$0 \cdot 57248$	0.57495	0.57583
	Linear (η_{L})	0.00474	0.00283	$0 \cdot 00233$	0.00205	0.00197	0.00192	0.00190	0.00189
$\left(0^{\circ} / 90^{\circ} / 0^{\circ} / 90^{\circ}\right)_{s}$	$0 \cdot 1$	0.95615	0.96662	0.96917	0.97068	0.97113	0.97137	0.97151	0.97156
	$0 \cdot 2$	$0 \cdot 84650$	$0 \cdot 88100$	$0 \cdot 88972$	$0 \cdot 89491$	$0 \cdot 89646$	0.89732	$0 \cdot 89779$	$0 \cdot 89795$
	$0 \cdot 4$	$0 \cdot 60368$	$0 \cdot 67105$	$0 \cdot 69926$	$0 \cdot 71141$	$0 \cdot 71511$	0.71716	0.71829	$0 \cdot 71869$
	$0 \cdot 6$	$0 \cdot 41930$	$0 \cdot 52721$	$0 \cdot 55206$	$0 \cdot 54854$	0.55427	0.55744	0.55917	0.55979
	$0 \cdot 8$	-	0.43928	$0 \cdot 46709$	0.45256	0.45930	$0 \cdot 46303$	0.46507	0.46579
	1	-	-	$0 \cdot 35028$	$0 \cdot 38943$	0.43635	$0 \cdot 43842$	$0 \cdot 40277$	$0 \cdot 40369$
	Linear $\left(\eta_{L}\right)$	0.00389	0.00250	0.00217	0.00199	0.00193	0.00191	0.00189	0.00189

$\eta_{12}=\eta_{23}=\eta_{13}=1 \cdot 12204 \times 10^{-2}, \rho=1566 \mathrm{~kg} / \mathrm{m}^{3} . v_{12}$ and ρ are Poisson's ratio and mass density, respectively.

Numerical results are evaluated using eigenvalue formulation based on the QR algorithm. To solve the non-linear eigenvalue problem, an iterative procedure is used. The iteration starts from a corresponding initial mode shape obtained from linear analysis, with amplitude scaled up by a factor. This gives the initial value denoted by δ_{i}. Based on this initial mode shape, the non-linear stiffness matrices are formed, and an eigenvalue and its corresponding vector are evaluated. This eigenvector is then scaled up again and the iteration continues until the frequency/damping factor and the eigenvector obtained from the subsequent two iterations satisfy the required convergence criteria suggested by Bergan and Clough [13] within the tolerance of $0 \cdot 01 \%$.

The numerical experiments are conducted for analyzing the non-linear damping behavior of immovable, simply supported cross-ply laminates. The beam assumed here is made of glass fibre reinforced plastic material (GFRP), whereas carbon fibre reinforced plastic material (CFRP) is considered for the plate analysis. The results, concerning the first resonant mode, are presented in Tables 2 and 3 for beams and plates, respectively.

It is evident from these tables that, in general, a decrease in the system loss factor ratio ($\eta_{N L} / \eta_{L} ; \eta_{L}, \eta_{N L}$ are the system loss factors obtained from linear and non-linear analysis) is seen with the increase in the amplitude of vibration (w / ρ_{g} or $w / h ; \rho_{g}$ is the radius of gyration of the beam) of the laminates. This effect is increased when the aspect ratio is smaller. Also, it can be seen that the rate of decrease of the damping ratio is lower, with respect to the amplitudes, with an increase in the aspect ratio. This type of trend in the damping behavior arises from a change in the shear energy due to shear of the laminates, and it depends not only on the aspect ratio, but also on the level of vibration amplitudes. It is also inferred from these tables that the value of the loss factor ratio changes with the number of layers in the laminates, as highlighted in reference [5]. However, for the laminated plates with a smaller number of layers, the results could not be obtained for cases with higher amplitudes of vibration due to the convergence problem. It is hoped that this study will be useful for the designers/engineers while designing the composite laminate for the flexural response under dynamic situations.

REFERENCES

1. R. F. Gibson and R. Plunkett 1977 The Shock and Vibration Digest 9, 9-17. Dynamic stiffness and damping of fibre-reinforced composite material.
2. R. F. Gibson 1990 The Shock and Vibration Digest 22, 3-12. Dynamic mechanical properties of advanced composite materials and structures: a review of recent research.
3. N. Alam and N. T. Asnani 1986 Journal of Composite Materials 20, 2-18. Vibration and damping analysis of fibre reinforced composite material plates.
4. S. K. Malhotra, N. Ganesan and M. A. Veluswami 1989 Journal of Sound and Vibrations 130, 379-386. Vibration and damping analysis of orthotropic triangular plates.
5. K. N. Koo and I. Lee 1993 American Institute of Aeronautics and Astronautics Journal 31, 728-735. Vibration and damping analysis of composite laminates using shear deformable finite element.
6. M. Touratier 1991 International Journal of Engineering Science 29, 901-916. An efficient standard plate theory.
7. M. Ganapathi, O. Polit and M. Touratier 1996 Proceedings of Third International Conference on Composite Engineering, New Orleans, 853-854. Shear bending and torsion modelling for multilayered beams of rectangular cross-section.
8. A. Beakou and M. Touratier 1993 International Journal for Numerical Method in Engineering 36, 627-653. A rectangular finite element for analysing composite multilayered shallow shells in statics, vibration and buckling.
9. R. M. Jones 1975 Mechanics of Composite Materials. New York: McGraw-Hill.
10. S. Rajasekaran and D. W. Murray 1973 American Society of Civil Engineers, Journal of Structural Division 99, 2423-2438. Incremental finite element matrices.
11. D. J. Mead and S. Markus 1969 Journal of Sound and Vibrations 10, 163-175. The forced vibration of a three-layer, damped sandwich beam with arbitrary boundary conditions.
12. X. Lin, R. G. Ni and R. D. Adams 1984 Journal of Composite Materials 18, 132-152. Prediction and measurement of the vibrational damping parameters of carbon and glass fibre reinforced plastics.
13. P. G. Bergan and R. W. Clough 1972 American Institute of Aeronautics and Astronautics Journal 10, 1107-1108. Convergence criteria for iterative process.
